
       

Proof:((see Senddon) 
Ex: page 55 and 57   H.W (( Senddon)). 

 

Non-Linear P.D.Es of the first order: 
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       By eliminate the arbitrary constants  a  and b .then g is called a complete 

solution of non-linear P.D.E( 5) 

The general method for obtaining complete solution of (5) is called Charpit's 

method. Before considering a general solution by this method, we give special 

procedure for handling four types of equations, 
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Charpit's formulation is; 
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We can solve these equations to obtained p and q  associated with original P. D.E. 

High order linear P.D.Es with constant and/or variable coefficients:  

Consider the P.D.E 

                                      ),(),( yxFzDDf                                                               (7) 

Where ),( DDf  denotes a differential operator of the type 
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may be written as;         z=[C.F]+[P.I], complementary function(C.F) can be 

obtained from 0),( zDDf , and particular integral (P.I) can be obtained from    
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Theorem : if u  is the complementary function and 1z is the particular integral of a 

linear P.D.E ,then 1zu   is a general solution of equation. 

Proof: H.w 

Theorem :if nuuu ,...,, 21  are  the solutions of  linear P.D.E zDDf ),( 0 then 
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,where sC'  , is also a solution. 

Proof: using equation ( ) for each solution, then obtain the aims of proof due to 

each one is satisfies equ.( ). 

We can classify linear differential operators ),( DDf  into two types (reducible and 

irreducible) 

Definition: ),( DDf  is irreducible if it can be written as a product of linear factors 

of the form cDbaD  ,while is irreducible, where cba ,,  are constants. 

Theorem: if the operator ),( DDf  is reducible, the order in which the linear factor 

occur is unimportant. The theorem will be proved if can show that 
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EX: pages 70,73,105   H.W 


