Proof:((see Senddon)

Ex: page 55 and 57 H.W ((Senddon)).

Non-Linear P.D.Es of the first order:

Let $\quad F\left(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right)=0$
is a non-linear P.D.E of the first order ((in which F is not necessarily linear in $\frac{\partial z}{\partial x}$ and $\left.\frac{\partial z}{\partial y}\right)$) be derived from

$$
\begin{equation*}
g(x, y, z, a, b)=0 \tag{6}
\end{equation*}
$$

By eliminate the arbitrary constants a and b.then g is called a complete solution of non-linear P.D.E(5)
The general method for obtaining complete solution of (5) is called Charpit's method. Before considering a general solution by this method, we give special procedure for handling four types of equations,
Type I: if the P.D.E in the form $f\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right)=0$, then $z=a x+h(a) y+c$, where $b=h(a)$
Type II: if the P.D.E in the form $z=a x+b y+f\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right)$, then $z=a x+b y+f(a, b)$
Type III: if the P.D.E in the form $f\left(z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right)=0$ then $z=z(x+a y)$, such that $\frac{\partial z}{\partial x}=\frac{d z}{d u}$ and $\frac{\partial z}{\partial y}=a \frac{d z}{d u}$, where $u=x+a y$
Type IV: if the P.D.E in the form $f_{1}\left(x, \frac{\partial z}{\partial x}\right)=f_{2}\left(y, \frac{\partial z}{\partial y}\right)$, then $f_{1}\left(x, \frac{\partial z}{\partial x}\right)=a$ and $f_{2}\left(y, \frac{\partial z}{\partial y}\right)=a$ with $F_{1}(x, a)=\frac{\partial z}{\partial x}$ and $F_{2}(y, a)=\frac{\partial z}{\partial y}$ and $z=F_{1}(x, a) d x+F_{2}(y, a) d y$
Charpit's formulation is;

$$
\frac{d p}{f_{x}+p f_{z}}=\frac{d q}{f_{y}+q f_{z}}=\frac{d x}{-f_{p}}=\frac{d y}{-f_{q}}=\frac{d z}{-\left(p f_{p}+q f_{q}\right)}=\frac{d F}{0}
$$

We can solve these equations to obtained p and q associated with original P. D.E. High order linear P.D.Es with constant and/or variable coefficients: Consider the P.D.E

$$
\begin{equation*}
f(D, \bar{D}) z=F(x, y) \tag{7}
\end{equation*}
$$

Where $f(D, \bar{D})$ denotes a differential operator of the type

$$
f(D, \bar{D})=\sum_{r} \sum_{s} C_{r s} D^{r} \bar{D}^{s}
$$

In which $C_{r s}$ are constants, $D=\frac{\partial}{\partial x}$ and $\bar{D}=\frac{\partial}{\partial y}$. The general solution of equ. (7) may be written as; $\quad \mathrm{z}=[\mathrm{C} . \mathrm{F}]+[\mathrm{P} . \mathrm{I}]$, complementary function(C.F) can be obtained from $f(D, \bar{D}) z=0$, and particular integral (P.I) can be obtained from P. $I=\frac{1}{f(D, \bar{D})} F(x, y)$.

Theorem : if u is the complementary function and z_{1} is the particular integral of a linear P.D.E ,then $u+z_{1}$ is a general solution of equation.
Proof: H.w
Theorem :if $u_{1}, u_{2}, \ldots, u_{n}$ are the solutions of linear P.D.E $f(D, \bar{D}) z=0$ then $\sum_{r=1}^{n} C_{r} u_{r}$, where $C^{\prime \prime} s$, is also a solution.
Proof: using equation () for each solution, then obtain the aims of proof due to each one is satisfies equ.().
We can classify linear differential operators $f(D, \bar{D})$ into two types (reducible and irreducible)
Definition: $f(D, \bar{D})$ is irreducible if it can be written as a product of linear factors of the form $a D+b \bar{D}+c$, while is irreducible, where a, b, c are constants.
Theorem: if the operator $f(D, \bar{D})$ is reducible, the order in which the linear factor occur is unimportant. The theorem will be proved if can show that $\left(a_{r} D+b_{r} \bar{D}+c_{r}\right)\left(a_{s} D+b_{s} \bar{D}+c_{s}\right)=\left(a_{s} D+b_{s} \bar{D}+c_{s}\right)\left(a_{r} D+b_{r} \bar{D}+c_{r}\right)$ for any variable operator can be written in the form $f(D, \bar{D})=\prod_{r=1}^{n}\left(a_{r} D+b_{r} \bar{D}+c_{r}\right)$.

Theorem:

a) if $a_{r} D+b_{r} \bar{D}+c_{r}$ is a factor of $f(D, \bar{D})$ and $\phi(\xi)$ is an arbitrary function of the single
value ξ, then if $a_{r} \neq 0, u_{r}=e^{\frac{-c_{r}}{a_{r}} x} \phi\left(b_{r} x-a_{r} y\right)$ is a solution of $f(D, \bar{D}) z=0$
b) if $a_{r} D+b_{r} \bar{D}+c_{r}$ is a factor of $f(D, \bar{D})$ and $\phi(\xi)$ is an arbitrary function of the single value ξ, then if $b_{r} \neq 0, u_{r}=e^{\frac{-c_{r}}{b_{r}} x} \phi\left(b_{r} x-a_{r} y\right)$ is a solution of $f(D, \bar{D}) z=0$
Theorem: if $\left(a_{r} D+b_{r} \bar{D}+c_{r}\right)^{n},\left(a_{r} \neq 0\right)$ is a factor of $f(D, \bar{D})$ and if the functions $\phi_{r_{1}} \cdots \phi_{r_{n}}$ are arbitrary functions, then $e^{\frac{-c_{r}}{a_{r}} x} \sum_{s=1}^{n} x^{s-1} \phi_{r s}\left(b_{r} x-a_{r} y\right)$ is a solution of $f(D, \bar{D}) z=0$

EX: pages 70,73,105 H.W

